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Extended Version: Including Results of Large-Scale Problems

Gerd Infanger

Department of Operations Research, Stanford University

March 1991

Abstract

The paper focuses on Benders decomposition techniques and Monte Carlo sam-

pling (importance sampling) for solving two-stage stochastic linear programs with

recourse, a method first introduced by George B. Dantzig and Peter Glynn (1990).

The algorithm is discussed and further developed. The paper gives a complete pre-

sentation of the method as it is currently implemented. Numerical results from test

problems of different areas are presented. Using small test problems we compare

the solutions obtained by the algorithm with the universe solutions. We present

the solution of large-scale problems with numerous stochastic parameters which in

the deterministic equivalent formulation would have billions of constraints. The

problems concern expansion planning of electric utilities with uncertainty in the

availabilities of generators and transmission lines and portfolio management with

uncertainty in the future returns.

* This paper is an update of Technical Report SOL 89-13R, August 1990, De-

partment of Operations Research, Stanford University, with extended numerical

results including numerical results of large-scale test problems.
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1. Introduction

A stochastic linear program is a linear program whose parameters (coefficients,

right hand sides) are uncertain. The uncertain parameters are assumed to be known

only by their distributions. That means that the values of some functions are

numerical characteristics of random phenomena, e.g. mathematical expectations of

functions dependent on decision variables and random parameters.

Suppose a function z = E C(V) is an expectation of a function C(vw),w E F.

V is a random parameter which has outcomes v'. Q is the set of all possible random

events. It can be finite, infinite, discrete or continuous. In the continuous case the

computation of the expected value requires to solve the integral:

E C(V) = J C(vw)P(dw)

with P being the probability measure.

In a general case V would consist of several components, e.g. V = (.,,..., Vh)

With outcomes v' which we also will denote only by lower case letters, e.g. v =

(vi,..., Vh) and p(v') alias p(v) would denote the corresponding density function.

We assume the components of V to be independent. In addition we will construct

Q by crossing the sets of outcomes Qj for vector entry vi, Z = 1,..., h as

= Q1 X 2 X ... X Qh.

In this case the above mentioned integral takes the form of a multiple integral:

E C(V)=J... C(v)p()dvl...dvh

In the case of Q being discrete and finite the expectation can be computed by

a multiple sum:

E C(V) = C . C(v)p(v).
V2 VA
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The main difficulties in stochastic linear programming deal with the evalu-

ation of the multiple integral or the multiple sum. The numerical computation

of the expectation requires a large number of function evaluations and each func-

tion evaluation means a linear program to be solved. Different approaches attack

this problem, e.g. Birge (1985), Birge and Wets (1986), Birge and Wallace (1988),

Frauendorfer (1988), Frauendorfer and Kall (1988), Ermoliev (1983), Higle and Sen

(1989), Kall (1979), Pereira et al. (1989), Rockafellar and Wets (1989), Ruszczynski

(1986), Wets (1984), and others. See Ermoliev and Wets (1988) for references. We

follow the concept of Dantzig et al. (1989) and Dantzig and Glynn (1990).

2. Two Stage Stochastic Linear Program

An important class of models concerns dynamic linear programs. Variables

which describe activities initiated at time t have coefficients at time t and t + 1.

Deterministic dynamic linear programs appear as staircase problems. The simplest

staircase problem is that with two stages: X denotes the first, Y the second stage

decision variables, A, b represent the coefficients and right hand sides of the first

stage constraints and D, d concern the second period constraints together with B

which couples the two periods. c, f are the objective function coefficients.

In the deterministic case c, f, A, b, B, D, d are known with certainty to the plan-

ner. In the stochastic case, the parameters of the second stage are not known to

the planner at time t = 1, but will be known at time t = 2. At time = 1 only

the distributions of these parameters are assumed to be known. The second stage

parameters can be seen as random variables which get certain outcomes with cer-

tain probabilities. We denote a certain outcome of these parameters with W, and the

corresponding probability with pw,w E Q, the set of possible outcomes.
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min Z = cX + EW(fYW)
s/t AX = b

- B'X + DY =d ()
X, Y > 0, w EQ

In (1) a two stage staircase problem is transformed into a two stage stochastic

linear program and the parameters d and B being random variables. Given the two

stage stochastic linear program one wants to make a decision X which is feasible

for all scenarios and has the minimum expected costs.

We consider the case of Q2 being discrete and finite, e.g. Q = (1, ... , K), the

parameter w takes on K values. Then we can formulate an equivalent deterministic

problem to the stochastic linear problem. This is tractable if K is small. For K

scenarios the deterministic equivalent problem is given in (2).

minZ= cX+plfYl+ p 2fy 2 + ... + pKfyK

s/t AX = b
-B 1 X + DY 1  = d'
-B2X + Dy 2  = d2  (2)

-BKX + DY K  = d "

X, Y1,y 2,. .. ,yK > 0

Two stage stochastic linear programs were first studied in Dantzig (1955) and

then developed by many authers. The method which we want to apply here is using

Benders (1962) decomposition. Van Slyke and Wets (1969) suggested to express the

impact of the seccnd period by a scalar 0 and "cuts", ,vhich are necessary conditions

to the problem and are expressed only in terms of the first period variables X and

0. Benders decomposition splits the original problem into a master problem and

a subproblem which decomposes into a series of independent subproblems, one for

to each w E Q. According to the L-shaped method the master problem, the sub

problems and the cuts are represented in (3), (4) and (5).
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The master problem:

minzM = cX + 0
s/t AX b- GtX + a't0 > gt, f=,..L (3)

XO > 0

The sub problems:

min z' = pwfY'
s/t p'7r' : DY ' = d' + B'X (4)

Y" > 0, wE Q, e.g.Q= {1,2,...,K}

where pir('* is the optimal dual solution of subproblem w.

The cuts:

g = E,pWW"j*dw = E(7rW*dw)

G = Epr'*B = E(7r"*Bw) (5)

a' = 0... feasibility cut

a' = 1 ... optimality cut

By solving the master problem we obtain a solution X. Given X we can solve

K subproblems w E Q to compute a cut. The cut is a lower bound on the expected

value of the second stage costs represented as a function of X. Cuts are sequentially

added to the master problem and new values of X are obtained until the optimality

criterion is met. We distinguish between two types of cuts, feasibility cuts and

optimality cuts. The first refers to infeasible subproblems for a given X and the

latter to feasible and optimum subproblems, given X.

If the expected values z, G, and g are computed exactly, that is, by evaluating

all scenarios w E Q, we refer to it as the universe case. As we will see later the

number of scenarios easily gets out of hand and it is not always possible to solve the

universe case. Therefore methods are sought which guarantee a satisfying solution

without solving the universe case.
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3. Monte Carlo Sampling

Each iteration of Benders decomposition requires the computation of expected

values, e.g. the subproblem costs, the coefficients and right hand sides of the cuts.

For each outcome w E Q a linear program has to be solved. The expected value of

the subproblem costs is denoted by

z = E C(v') = E fY*' , w EQ,

with Y*W being the optimum solution of subproblem w. The number of elements

of fl is determined by the dimensionality of the stochastic vector V = (V1 ,..., Vh).

Typically the dimension h of V is quite large. For example, in expansion planning

problems of electric power systems one component of V denotes the availability of

one type of generators or one demand of power in a node of a multi-area supply

network or the availability of one type of transmission line connecting two nodes.

Consider several nodes and arcs and one demand and some options of generators

at each node. The number of scenarios K in the universe case quickly gets out of

hand, even if the distribution of each component of V is determined by just a small

number K' of discrete points. Suppose e.g. h = 20 and K' = 5, i - 1,..., 20. Then

the total number of terms in the expected value calculations is K = 520 - 1014,

which is not practically solvable by direct summation. Monte Carlo methods appear

promizing to compute multiple integrals or multiple sums for h large (Davis and

Rabinowitz (1984)). See Hammersly and Handscomb (1964) for a description of

Monte Carlo sampling techniques.

3.1 Crude Monte Carlo

Suppose vW, w = 1,... , n are scenarios, sampled independently from their joint

probability mass function, then C ' = C(v ' ) are independent random variates with

expcctation z.
n

=(6)
w=1
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is an unbiased estimator of z and its variance is

2 = a2 /n
0 * z =

a 2 = var(C(V)).

Thus the standard error is decreasing with sample size n by n" ' . The con-

vergence rate of i to z is independent of the dimension h of the random vector

V.

3.2 Importance Sampling

We rewrite

z = E C(vw)P(Vw)= z C(v')p(vw)q(v')

wE ,wEf q(v-)

by introducing a probability mass function q(v'). We can see q as a probability

mass function of a random vector W, therefore by change of variables

z = c (W )g W )

q(W)

We obtain a new estimator of z,

I: C(ww)p(ww)
n q(w-)

which has a variance of

var(i) =1 Z (C(w)P(W)-Z) 2 q(w ' )
un \ q(w 'O )

Choosing q*(ww) C(wW)P(w'w) would lead to var( ) 0, that meansChoosingE E q*w °  ac(w')P(w,)

we could get a perfect estimate of the multiple sum just by one single observation.

However this is practically useless, since to sample C.p/q we have to know q and to

determine q we need to know z = Ewn C(w')p(ww), which we eventually want to

compute. Nevertheless this result helps to derive some heuristics of how to choose

q: It should be approximately proportional to the product C(w'))p(w') and have a
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form which can be integrated analytically. For instance using the additive (separable

in the components of the stochastic vector) approximation:

h

t=!

could be a possible way to compute a proper q:

q(w') hC(ww)p(w)

In this case one has to solve only h 1-dimensional sums instead of 1 h-dimen-

sional sum. Depending on how well the additive model approximates the original

cost surface the above mentioned estimator will lead to smaller variances compared

to crude Monte Carlo sampling. Of course if the original cost surface has the

property of additivity (separability) no sampling is required, as the multiple sum is

computed exactly by h 1-dimensional sums.

The advantage of this approach lies in the fact that even if the additive model

is a bad approximation to the cost surface the method works. The price that has

to be paid is a high sample size. The variance reduction compared to crude Monte

Carlo will be small. For the theory of importance sampling we refer to Glynn and

Iglehart (1989). See also Dantzig and Glynn (1990).

R. Entriken and M.Nakayama in Dantzig et. al. (1989) developed an impor-

tance sampling scheme using an additive model to approximate the cost function

E C(V). Actually C(v) is approximated by a marginal cost model, considering

marginal costs in each dimension i of V and a base case, the point from which the

approximation is developed. We will use this approach here. As we employ impor-

tance sampling within the Benders decomposition algorithm the costs C(v, X), the

approximation of the costs I'(v, X) and thus the importance distribution of q(v, X)

depend also on k, the current solution of the master problem. Introducing the

costs of the base case C(r, X) makes the model more sensitive to the impact of the
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stochastic variables V.

h

C(V,.,) - 1(V,Xf) = C(r,X) + (7(Vi,
=(7)

Mi(Vi,X) = C(7i,...,ri_,,Vi, ri+,., rh,X) - C(r,X).

r = (T,... ,-h) can be any arbitrary chosen point out of the set of values vi, Z =

1,... , h. For example we choose ri as that outcome of Vi which leads to the lowest

costs, ceteris paribus. These values can be found easily. Note that the second stage

costs are computed by a linear program, where the uncertain parameters appear in

right hand side. Therefore the second stage costs are convex in the stochastic pa-

rameters V. The sign of the dual variables associated with the stochastic parameter

indicate the direction to lowest costs. In the context of expansion planning of power

systems this means selecting respectively lowest demands and highest availabilities

of generators and transmission lines.

Defining

M.I(X) = E M.( ,X)= Mi(vi',X)p(vf) (8)

and

F(vw i2 ) =C(vw',X) - C(r, X)F~' ) h (9)
Ei=1 M,(v ,A"

where we assume that
h

Mi(vi',X) > 0. that means at least one MI(v 7,X') > 0,

we can express the expected value of the costs in the following form:

h €0 ^ hz() C() + M(vX)
C'(~r, +~-Fv X 1JP(V ') "  (10)

i=1 wEl i - X)(k )
21=

Note that this formulation consists of a constant term and a sum of h expecta-

tions. Given a fixed sample size n we partition n into h sub-samples, with sample

sizes ni,i = 1,...,h such that E ni = n and ni >1 1, ... n and n, being ap-

proximately proportional to Ri. The h expectations are separately approximated
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by sampling using marginal densities. The i-th expectation corresponds of course

to the i-th component of V. Generating sample points in the i-th expectation we

use the importance density (pjM,1M) for sampling the Z-th components of V and

the original marginal densities for any other components. Denoting

= n-± ,=,n i 1: F(vj,.k )  (11)

the estimate of the i-th sum, we obtain

h

i(X = ±) + (12)
i=1

the estimated expected value of the second stage costs i(±).

Let &2?(X) be the estimated sample variance of the i-th expectation, where

0 (1) = 0 if ni = 1. The estimated variance of the mean, a (X), is then given by

o 2(±) = a ( (13)
i=Ii

Using importance sampling one can achieve significant variance reduction. The

experiment of M. Nakayama in Dantzig et al. (1989) claims a valiance reduction

of 1:20000 using importance sampling versus crude Monte Carlo sampling: For a

given and optimal X the second stage costs of a multi area expansion planning

model with 192 universe scenarios were sampled with a sample size of 10 using both

methods and the results compared.

The derivation above concerned the estimation of the expected second stage

costs z(). To derive a cut we use the same framework analogously. Note that

a cut is defined as an outer linearization of the second stage costs represented as

a function of X, the first stage variables. At ±, the value of the cut is exactly

the expected second stage costs z(±). Note also that any choice of q is a valid

choice. As we do not want to derive different importance distributions for the

coefficients and the right hand side of a cut, we use the q already at hand from the
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cost estimation. Therefore we employ directly the cost approximation scheme and

the importance distribution to compute the gradient and the right hand side of a

cut. With B(vw) := B w and d(vw) := dw being the outcome of B and d in scenarios

w,w E Q and 7r*(vw,x) := 7r'*(X), the optimum dual solution in scenario w, we

define

FG(vw, ) = (Vr (vw,f)B(vw) - ir*(r, ±)B(-)V' = h ,vC (14)

Fg(vw,X) = X)d(v w) - (15)

and compute:

h h

G(X) = 7r*(r, X)B(r) + E ( F (V )X) p11  (v ) (16)
i=l weftA(X j=l

h F M v  h

g(X) = 7r(r,X)B(r) + EM,(X) F9(v-, M ) ll pj (v), (17)
i=1 wEf m ) j=1

the coef. .ents and the right hand side of a cut. We estimate the expected values

again by sampling using the same sample points as at hand from the computation

of Z.

Using Monte Carlo sampling we obtain 2(X), (X), q(X), which are approx-

imations of the expected values z(±), G(X), g(±) We also obtain the estimated

variance of the mean of the second stage costs a2(±). The impact of using approx-

imations instead of the exact parameters on the Benders decomposition algorithm

is analyzed in the following section.

4. Benders Decomposition

In the following we will derive the main steps of Benders decomposition al-

gorithm for two stage stochastic linear programs considering the "universe" case,

which gives the exact solution of the equivalent deterministic problem ("certainty
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equivalent"). We will then analyze the impact of sampling of subproblems on Ben-

ders decomposition. See Geoffrion (1970) for a derivation of Benders decomposition

algorithm.

Given the equivalent deterministic problem in (2) and assuming K scenarios

describe the universe case, we rewrite the problem applying projection onto the X

variables and obtain (18). We assume for simplicity that (2) is feasible and has a

finite optimum solution.

min Z =
cX + Min[p'fyI + pfy 2 +... +pKfyK]

AX = b DY 1  = dl+ BIX
X > 0 Dy 2  = d 2 + B 2X (18)

DyKt= dK+BKX
yy2 ,.,yK> 0

The infimal value function in (18) corresponds to the following primal linear

problem (19):

min zp =plfy +p 2fy 2 + . +p KfYI= E-(fYW)
p11 : DY1 = d1 + BIX
p27r.2 DY 2  = d2 +B 2X

• "-. . . (19)

pK7rK: DYK = dK +BH'X
y1Iy 2 ... , YK > 0

and to the dual linear problem (20):

max ZD =
pI7r'(dl + BIX) + p2 7r2 (d2 + B 2X)+... +pK7rK(dK + BKX)

7rD 2< 
f (20)7r2D <f (0

7r KD < f

The primal problem is parameterized in the right hand side by X. The as-

sumption (2) being finite implies that (19) is finite for at least one value of X for

which X > 0 and AX = b. Applying the Duality Theorem of Linear Programming
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we state that (20) has to be feasible. The feasibility conditions

fW-D - f < 0

indicate that the feasible region {rwl7rWD - f < 0} is independent of X and w and

just repeated for each scenario w E SI.

The assumption (2) being feasible requires feasibility of the primal problem (19)

for at least one X for which X > 0 and AX = b. We define ir := (7rI,7r 2 ,.. ,rK) to

be the vector of dual variables of problem (20). By the Duality Theorem again (20)

has to be finite. Let ir3 ,j = 1,... ,p be the extreme points and 7ri,j = p+l,... ,p+q

be representatives of the extreme rays of the feasible region of (20), where 7r:

(r lj
7, 7r.2j I . KJ). Problem (20) is finite if and only if

7r W(d+BX) 0, j=p+l,...,p+q

(21)
w E.

Constraints (21) may be appended to problem (18) to ensure that the problem

is bounded.

Next we outer linearize the infimal value function in (18), whose value is exactly:

Maximum
)p p wr' (d- + B'X). (22)

wEnl

By expressing the infimal value function by the outer linearized dual problem

and using 0 as the smallest upper bound the problem can be represented in the

following form:

min Z= cX + 0
AX =b

X > 0 (23)
o >E_,E pww "i(dw + BWX), j = 1,...,p
7rj(d", + B'X) < 0, j = p+ 1,...,p+ q, w E.

Relaxation is applied to solve problem (23) as we do not want to know all

7rj,j = 1,...,p + q in advance: Given a solution (X,0) from the master problem
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one solves problem (19) or problem (20), actually by solving the individual problems

(4) or the dual problems (24) of these:

z'*(X) = max z' =7r"(d' + B"X)
lrwD < f (24)
7rW >0 w E Q.

We call 7r'*(X) the optimum dual solution vector. If primal infeasibility or

dual unboundness is detected, with 7rw°(X) denoting the corresponding extreme

ray, a feasibility cut

*rw  .(d- + BwX) < 0 (25)

is added to the master problem. If all primal problems are feasible or all dual

problems bounded an optimality cut:

0 > U; pwrW*(XC). (dw + bWX) (26)
wEn

is added to the master problem. We call

L(X) := E p'irW*(X) (dw + BwX) (27)
wEft

an outer linearization of the second stage costs, which are defined by

z(E) := zw'(). (28)
wEEI

The relation:

L(X) !5 z(X) (29)

formulates the main property of the outer linearization. Any cut independent of ±

from which it was originally derived, is a valid cut as long as it does not violate the

main property of outer linearization.

Benders decomposition algorithm provides upper and lower bounds to the so-

lution in each iteration.
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In the 1-th iteration

LB' := c±' + bt (30)

with X', 9t being the optimum solution of the master problem is defined to be a

lower bound and

UBe :=min{UB1-1 ,cX t + z(Xt)}, UB = oo (31)

with z(Xt) the second stage costs, to be an upper bound to the solution of the

problem. If

(UB' - LB')/LB t < TOL (32)

where TOL is a given tolerance, the problem is said to be solved with a sufficient

accuracy.

4.1 Probabilistic Cuts

Employing Monte Carlo sampling techniques means not to solve all problems

w E Q, but solving problems w E S, S being a subset of Q. Instead of the exact

expected values z(.X), G(X), g(X) we compute the estimates (.t), G(X), p(X)

by importance sampling. We also estimate the error of the estimation of z(X ) by

the variance var(2(X )) = U2( X). Thus e.g. in the case of the second stage costs

the estimation results in an estimated mean with some error distribution. There is

good reason to assume the error being normally distributed (Davis and Rabinowitz

(1984)). We define i(±) to be random, normally distributed with mean Z(Xk) arid

variance or,

5( : (( )aZX) (33)

A cut obtained by sampling differs in general from a cut computed by solving the

universe scenarios. The outer linearizations L(X) = G(X)X + g(±), with respect

to the universe case and L(X) = 0(X)X + j(Xk), with respect to the estimation

differ in the gradient and the right hand side. At X = X, where L(-X) = z(X ) and

15



L(X) = i(X) we substitute the variable 0 for _;(X) when defining a cut. By this

substitution 0 takes on the distribution of i, therefore 6 := N(O, a'). This is only

true at X = X. However, we assume this error distribution to be constant with

respect to X. That means we see the error mainly concentrated in the right hand

side of the cut and we assign the variance ao(X) also to the right hand side and

define
(X) := N(g(X), oa (XY)) (34)

to be the random right hand side of the cut, normally distributed with mean p(X)

and variance a (). We can expect that in the final solution cuts will be binding

at an X very close to X, where they were originally derived. The assumption of a

constant error distribution of 6 is therefore intuitively plausible. See also Dantzig

and Glynn (1990) in this respect. In general S is a sufficiently large subset of Q so

that the variance a.is small.

Cuts computed by sampling do not necessarily meet the condition of outer

linearization. Violating this condition a cut intersects and separates parts of the

feasible region of the second stage problem. A sampled cut is therefore not a valid

cut.

4.2 Upper and Lower Bounds

For random second stage costs i(fXe) and random right hand sides t, t

1,..., L the upper and lower bounds of the problem as provided by Benders decom-

position algorithm axe probabilistic.

The Upper Bounds

fi~ e := c~t +() ), 2 1,..,L(35)

are random parameters, normally distributed with means UB and variances
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UB':= N(OB',a (X')) e= 1,...,L. (36)

We define the lowest upper bound to be the upper bound with the lowest mean

UIBmmi : UBmin := min {UB t} (37)

with corresponding variance a L

The lower bounds are obtained from the solution of the master problem. To

determine the distribution of a lower bound consider the master problem at iteration

LBL = * =minzL= c X +0

st po: A X =b

p1  -G 1 X + 0 >

pL -GLX +0>
X, 9>0

where L optimality cuts have been added to the originally relaxed master prob-

lem. We do not consider feasibility cuts for the following argument, as they are

exact. The vector p0 and the scalars pt , e = 1,. . . , L denote the dual prices. The

right hand sides §' , 1. . , L are independent stochastic parameters, normally

distributed. We assume independence as the cuts are generated from independent

samples, neglecting the dependency that , = 1,..., L are weakly connected by

Benders decomposition algorithm.

With the random parameters §t, E = 1,..., L in the right hand side also the

optimum solution i will be random. We define the optimum solution of the master

problem

:= N( L, var( )) (39)

to be a random parameter, normally distributed, with mean %f1 and variance

var( M). Hence one could experimentally obtain the distribution of fjL by ran-

domly varying the right hand sides according to N samples j = 1,..., N drawn
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from the normal distributions of §', f = 1,. ... L and by solving the master problem

for all N samples. One could estimate the mean and the variance of the distribuiton

from the samples J = 1,..., N. As this is a very expensive way to obtain an es-

timate of the lower bound distribution, we proceed instead in the following way.

We have already stated that we choose a sample size ISI, such that the variances

t , e = 1,..., L are small. If the variances are small we can assume that for all

outcomes of the random right hand sides §' , - 1,..., L, the optimum solution of

the master problem has the same basis. Then we can compute the mean of the

lower bound estimate:

nM =mn = c X + 0
s/t p: A X = b

p1 : -G 1 X + 0 > (• . (40)
p L : L-GX + 0 > L

X, 0>0

by substituting the means .t, = 1,...,L for the random parameters j =

1,..., L, and the variance var(2) by using the dual solution:

L L

var(4m) p 'var( ) = p (X). (41)
t=I t=1

As the lower bound means increase monotonically with the number of iterations,

we obtain the largest lower bound by LBL = i and LBL := N(LBL,var(LBL)).

4.3 Stopping Rule

The analogy to the deterministic Benders decomposition algorithm we stop, if

the upper and lower bound are sufficiently close. In the case of probabilistic bounds,

the algorithm has to be stopped, if the upper and lower bound are indistinguishable

in distribution. Based on the idea of George B. Dantzig, we check this condition by

using students-t-test to determine if s' > 0 with 95% probability, where

s t =UBt - LB + TOL (42)
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and TOL being a given tolerance.

The employment of students-t-test requires independency of the upper and

lower bound distributions. As independency is not ensured in the first place as

an upper bound and a binding cut in the master problem could be obtained from

the same set of samples, we obtain independency by resampling the lowest upper

bound before employing students-t- test. The X corresponding to the lowest upper

bound and the corresponding importance distribution have to be stored. If upper

and lower bounds are close to each other, which is checked by using students-t-test

without fulfilling the independence requirement, we use new samples to compute

an independent upper bound. Now we check if st > 0 by students-t-test.

4.4 Confidence Interval

After passing the students-t-test in the last iteration, which means that the

upper and lower bound means are indistinguishable, we obtain the optimum solution

) 9Li from the master problem. We derive from the distributions LBL and UTBL

a 95% confidence interval: On the left side by using the lower bound distribution

and on the right side by using the upper bound distriblition. We define

Cleft = 1.96 var(LBL)

Cright = 1.96V/var(UBL)

and obtain the confidence interval

LB - Cleft < Z* < UB + Cright (44)

for the final solution Z*.

If (Cleft + Cright)/LBL < Ctot, where Cjot is a predefined quality criteria for

the confidence interval, the obtained solution is satisfying. Otherwise the sample

size has to be increased and the problem has to be solved again with the increased

sample size.
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4.5 Improvement of the Solution

Suppose the solution with a certain sample size was not satisfying. Instead

of starting from the beginning with an increased sample size we want to use the

information, which we have already collected. To do this, we look for the binding

cuts in the final solution, increase the sample size and recompute the binding cuts

at the same ±t, they were originally computed. This of course means that one has

to store the values of ±t and the associated importance distributions or recompute

the latter. The enlarged sample size leads to smaller variances of the binding cuts

and eventually to a smaller confidence interval of the final solution. Berry-Essen,

e.g. Hall (1979), give upper bounds on the rates of convergence in the central limit

theorem. Solving the master problem again with the improved binding cuts will

in general not result in an intersection of the lower and upper bound. Therefore

some more iterations are necessary to obtain the optimal solution according to the

increased sample size. This improvement procedure could be employed iteratively

until a satisfying solution is obtained. It is a possible way to improve a non satisfying

solution. It may not be very efficient and there may be better ways to do so.

In general we choose a sample size such that the obtained confidence interval is

satisfying. We can state now the algorithm as follows:

4.6 The Algorithm

Step 0 Initialize:

I = O, UB 0 = o.

Step 1 Solve the relaxed master problem and obtain a lower bound:

LBt = c +t.

Step 2 t=.t+I

Solve subproblems and obtain an upper bound:

OB 1 = min{.B t - 1 , c±' + i(X t )}, compute and add a cut to the master
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problem, using Monte Carlo (importance) sampling.

Step 3 Solve the master problem and obtain a lower bound:

LBt = cff + t.

Step 4 s - UB' - LBt + TOL

Check if s > 0 using students-t-test.

Step 5 Compute confidence interval and obtain a solution: Z*,X,O. Stop.

Improvement of the solution:

Step 6 If (Cleft + Cright)/LB < Cto1, stop,

otherwise got to Step 7

Step 7 Increase sample size and initialize UB ° = oo.

Step 8 Recompute binding cuts.

Upper bound: UB 1 = min{UB t'- , C± + i(Xt).

Step 9 Go to step 3

5. Numerical Results

The method has been implemented. The Fortran code for solving general large-

scale two-stage stochastic linear problems with recourse using Benders decomposi-

tion and importance sampling uses MINOS (Murtagh and Saunders (1983)), which

has been adapted for this purpose, as a subroutine for solving the linear programs

of the master-problem and the sub-problems. Alternativly the code can also use a

modified version of Tomlin's (1973) LPM1 code of the revised simplex method as

a subroutine. Versions of the code are installed on several computers, like on the

IBM-3090, the Microvax-workstation, and on Personal Computers. All following

test results are computed on a Toshiba laptop personal computer T5200. First we

present an illustrative example, a toy problem of expansion planning of power sys-

tems which we discuss in detail. Then we derive numerical results from other small

test problems. Eventually we demonstrate the solution of large-scale test problems
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with numerous stochastic parameters.

The illustrative example, test problem APL1P is a model of a simple power

network with one demand region. There are two generators with different invest-

ment and operating costs, and the demand is given by a load duration curve with

three load levels: base, medium and peak. We index the generators with j = 1, 2,

and the demands with i = 1, 2,3. The variables, xj, j = 1, 2, denote the capacities

which can be built and operated to meet demands di, i = 1, 2,3. The variable yij

denotes the operating level for generator j in load level i with operating cost fi.

The variable yi, defines the unserved demand in load level i which can be purchased

with penalty cost fi, > fij. The subscript s is not an index, but denotes only an

unserved demand variable. The per-unit cost to build generator j is cj. Finally, the

model is formulated with complete-recourse, which means that at any given choice

of x demand is satisfied for all outcomes. In this model, building new generators

competes with purchasing unserved demand through the cost function, yet there is

a minimum capacity bi which has to be built for each load level. The availabilities of

the two generators, /i, j = 1,2, and the demands in each load level, di, i = 1, 2, 3,

are uncertain. Generator one has four possibilities, while generator two has five,

and each demand has four. All of the data values are given in Table 1 and the

problem can be formulated as follows:

min E =1 cii + E{E2=IE=I fijy + E3=I f 3Y,}

S/t Xj b j =1,2
-ay'x, + ,i=1 Yij <0, j=1,2

2j= W + y > di =1,2,3
Xj, y , y " =- 1,2 ,

i = 1,2,3.
(45)

We will take w E fl when solving the universe problem and w E S when solving

a problem with sampling.
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Generator Capacity Costs (106 $/(MW, a))
c= 0.4, c2 = 0.25

Generator Operating Costs (106 $/MW, a)
f I = 0.43 f21 = 0.87
f12 = 0.20 f22 = 0.40
f13 = 0.05 f23 = 0.10

Unserved Demand Penalties (106 $/MW, a)

f= f2 = f3, = 1.0

Minimum Generator Capacities (MW)
b, = b2 = 1000

Demands (MW)
# 1 2 3 4
Outcome 900 1000 1100 1200
Probability 0.15 0.45 0.25 0.15

Availabilities of Generators
Generator 1 (01)
# 1 2 3 4
Outcome 1.0 0.9 0.5 0.1
Probability 0.2 0.3 0.4 0.1
Generator 2 (02)

# 1 2 3 4 5
Outcome 1.0 0.9 0.7 0.1 0.0
Probability 0.1 0.2 0.5 0.1 0.1

Table 1: APL1P, test problem data.
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The number of possible demands and availabilities results in 4 * 5 * 43 = 1280

possible outcomes in Q2, and thus 1280 subproblems have to be solved in each it-

eration of Benders decomposition for the universe case. We compare the universe

solution with solutions gained by the importance sampling algorithm. Table 2 shows

the results in the case of 20 samples out of the possible 1280 combinations and with-

out an improvement phase. 100 replications of the same experiment with different

seeds were run to get statistical information about the accuracy of the solution

and the estimated confidence interval. The mean over the 100 replications of the

objective function value (total costs) differs from the universe solution by 0.3%.

From the distribution of the optimum objective function value derived from the 100

replications of the experiment a 95% confidence interval is computed: plus minus

2.1%. In each replication a 95% confidence interval of the solution is estimated.

The mean over all replications of the estimated confidence interval is on the left

side 1.5% and on the right side 1.9%. In the worst case an objective function value

of 26233.9 was computed. This is about 6.4% off the correct answer. The estimated

95% confidence interval in this case did not cover the correct answer. The coverage

rate of 90% expresses that in 90% of the 100 replications the correct answer of the

universe solution is covered by the estimated confidence interval. This shows that if

using a sample size of 20 we are slightly underestimating the confidence interval: if

the computation of the 95% confidence interval was exact, we would expect a cover-

age rate of 95%. The reason for the underestimation of the 95% confidence interval

in the case of sample size 20 lies in the underlying assumptions of the estimation

method, e.g. constant error distribution along a cut, same basis for all outcomes of

the random right hand sides of the cuts. Especially the latter assumption is only

true, if the variances are small. A larger sample size reduces the variances and

we expect a better coverage rate of the 95% confidence interval. The bias and the

confidence interval of the optimum strategies (the loads x to be installed) are larger
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than those of the optimum objective function value. The objective function near

the optimal solution appears to be flat: several different strategies lead close to the

optimum costs. Confidence intervals of about 57% and 52% are computed. In the

above example a sample size of 20 was chosen. Note that additional computational

effort is also needed to obtain the importance distribution, e.g. 17 subproblems

have to be solved in each iteration to obtain the marginal costs Mi. Compared to

the universe solution the method e.g. achieves with about 2.9% of computational

effort a solution which is with 95% confidence within an interval of plus minus 2.1%

of the correct answer. Importance sampling seems to be a promising approach to

solving stochastic linear programs. Table 3 represents the results when using 200

samples: One can see decreasing bias, decreasinw -'-fidence intervals and improving

estimations of the confidence interval ° with increased sample size. The coverage of

the 95% confidence interval, computed by 100 replications of the experiment with

different seeds, is now 95%.

We investigate the performance of the algorithm on two other examples which

are small enough to compute the universe solution. PGP2, derived from Louvaux

(1988), is a power generation planning model used to determine the capacities of

various types of equipment required to ensure that consumer demand is met. The

demands in 3 demand regions are stochastic and represented by discrete random

variables with 9, 9 and 8 outcomes. CEP1 is a capacity planning model for a

manufacturing plant in which several parts are produced on several machines. If

the demand for the parts exceeds the production capability the residual parts are

purchased from external sources at a price much higher than the production costs

to meet the demand. There are 3 stochastic parameters (demands for parts), with

discrete and uniform distribution with 10 outcomes each. The formulations and

data for CEP1 and PGP2 may be found in Higle, Sen and Yakowitz (1990).

In the case of PGP2 we obtained very accurate results using a sample size of
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50. By computing 100 replications of the experiment the mean of the objective

function values differs 0.1% from the correct answer. The 95% confidence interval

of the objective function value, computed by the 100 replications of the experiment

is ±0.76%, the mean of the confidence intervals estimated in each replication is on

the left side 0.62% zand on the right side 0.9%. In 98% the correct solution is covered

by the 95% confidence interval. In the worst case the solution differed by 0.77%

from the correct answer and was not covered by the 95% confidence interval.

In the case of CEP1 a higher sample size is needed to obtain accurate results.

The estimation of the second stage costs appears to be more difficult. The reason lies

in the fact that the (penalty) costs of buying parts from external sources are much

higher than the costs of production. For this problem the additive approximation

function is not a very good approximation to the true cost function as it does not

cover the very high costs in scenarios where all 3 demands are high. The estimated

confidence interval seems to be large, we computed 4.65% on the left side and 4.62%

on the right side (mean over 100 replications of the experiment). The estimations

of the confidence interval are accurate as indicated by the coverage rate of 95% of

the correct answer by the 95% confidence interval. In the worst case a difference of

8.07% of the objective function value to the correct answer is computed. The worst

case solution is not covered by the estimated confidence interval. In this examples

it is easier to compute the value of the first stage variables than to estimate the

second stage costs. In most cases the correct answer of the first stage variables was

obtained. We have developed methods which adaptively improve the approximation

function if sample information shows that the variance of the estimation is too large.

The discussion of the adaptive approach is not subject of this paper. Table 4 and

Table 5 represent the computational results of PGP2 and CEP1 and show the sizes

of the test problems.

In the following we report on the solution of some large test problems with
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several stochastic parameters, which are too big to be solved by computing the

universe solution.

WRPM is a prototype multi-area capacity expansion planning problem for the

western USA and Canada. The model is detailed covering 6 regions, 3 demand

blocks, 2 seasons, and several kinds of generation and transmission technologies.

The objective is to determine optimum discounted least cost levels of generation

and transmission facilities for each region of the system over time. The model min-

imizes the total discounted costs of supplying electricity (investment and operating

costs) to meet the exogenously given demand subject to expansion and operating

constraints. A description of the model can be found in Dantzig et al. (1989)

and Avriel, Dantzig and Glynn (1989). In the stochastic version of the model

the availabilities of generators and transmission lines and demands are subject to

uncertainty. There are 13 stochastic parameters per time period (8 stochastic avail-

abilities of generators and transmission lines and 5 uncertain demands) with discrete

distributions with 3 or 4 outcomes. The operating sub-problems in each period are

stochastically independent. The test problem WRPM1 covers a time horizon of 1

future period, WRPM2 covers 2 future periods. There are differences in the pa-

rameters between WRPM1 and WRPM2. Note that in the deterministic equivalent

formulation the problem would have more than 1.5 billion (WRPM1) and more

than 3 billion (WRPM2) equations.

F12 is a portfolio management test problem, formulated as a network problem.

It is a modified version of test problems found in Mulvey and Vladimirou (1989).

The problem is to select a portfolio which maximizes expected returns in future

periods taking into account the possibility of revising the portfolio in each period.

There are also transaction costs and bounds on the holdings and turnovers. The

test problem F12 covers a planning horizon of two future periods. The returns of

the stocks in the two future periods are stochastic parameters. The problem is
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formulated as a 2-stage problem. Rather than solving the problem by looking at a

certain number of preselected scenarios (18 to 72 in case of Mulvey and Vladimirou)

we instead assumed the returns of the stocks in the future periods being independent

random parameters, discretely distributed with 3 outcomes each. As there are

13 stocks with uncertain returns, the problem has 26 stochastic parameters. The

universe number of scenarios (2.5- 1012) is very large, so that the deterministic

equivalent formulation of the problem has more than 1014 rows. The stochastic

parameters appear in the B-matrix as well as in the D-matrix.

Computational results of the large-scale test problems are represented in Table

6. Besides the solution of the stochastic problems Table 6 also shows the results

from solving the expected value problem. In this case the stochastic parameters are-

substituted by their expectations to obtain a deterministic problem. The expected

value solution is then used as a starting point for the stochastic solution. We also

report on the estimated expected costs of the expected value solution. These are the

total expected cost which would occur if the expected value solution is implemented

in a stochastic environment. The objective function value of the true stochastic so-

lution has to lie between the objective function value of the expected value solution

and the expected costs of the expected value solution.

In case of WRPM1 and WRPM2 we chose a sample size of 100. The estimate of

the objective function value of the stochastic solution (289644.2 in case of WRPM1

and 143109.2 in case of WRPM3) turns out to be amazingly accurate. The 95% con-

fidence interval is computed as 0.0913% on the left side and 0.063% on the right side

(WRPM1) and 0.0962% on the left side and 0.1212% on the right side (WRPM2).

Thus the objective function value of the stochastic solution lies with 95% proba-

bility within 289379.7 < z* < 289826.0 (WRPM1) and 142971.5 < z* < 143282.6

(WRPM2). In both cases the expected costs of the expected value solution and

the expected costs of the stochastic solution differ significantly. The solution time
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on a Toshiba T5200 laptop PC with 80387 mathematic coprocessor was 75 minutes

(WRPM1) and 187 minutes (WRPM2). During this time about 7500 (WRPM1)

and 15700 (WRPM2) subproblems (linear programs of the size of 302 rows and 289

columns) get solved.

A sample size of 200 has been chosen for solving test problem F12. The problem

gets solved in only 4 iterations. The objective function value of the stochastic

solution is computed as 1.1695 with a 95% confidence interval of 0.454% on the left

side 0.371% on the right side. Thus with 95% probability the optimal solution lies

between 1.164 < z* < 1.174. The estimated expected costs of the expected value

solution (1.172) lie within the 95% confidence interval of the costs of the stochastic

solution, however also in this case expected costs of the expected value solution and

expected costs of the stochastic solution differ significantly.

6. Conclusion

We have discussed a promising approach to solving two stage stochastic linear

programs with recourse and obtained first numerical results: employing importance

sampling within the Benders decomposition algorithm we got very accurate solu-

tions to the test problems with only a small sample size. The technique enables

us to solve large-scale problems with a large number of stochastic parameters on a

laptop computer. The test problems solved so far iniclude up to 26 stochastic pa-

rameters and the sub-problems have a size of several hundred rows and columns. In

the deterministic equivalent formulation the problems would have more than several

billions of equations. The small confidence intervals of the solutions indicate that

an extension to even more stochastic parameters is possible. The analysis in this

paper concentrated on discrete distributions. The method, however, can be easily

extended to continuous distributions. Current research concentrates on testing the

technique on large-scale problems of different areas with large numbers of stochastic
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parameters. We investigate possibilities to adaptively improve the approximation

function, if it turns out that the error of the estimate exceeds a predefined level.

If some problems require a much higher sample size the use parallel processors will

enable us to quickly solve large numbers of samples to obtain low variances of the

estimations. A parallel implementation of the method is in preparation.
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Table 2: Model APL1P, 20 samples (100 replications of the experiment)

correct mean 95% conf bias

#univ 1280
#iter 7.6

G1 1800.0 1666/5 57.0 - 7.4

G2 1571.4 1732.5 52.5 10.2
theta 13513.7 13729.4 21.3 1.6

obj 24642.3 24726.7 2.1 0.3

est. con (%) left 1.5
est. conf (%) right 1.9
coverage 0.90
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Table 3: Model APL1P, 200 samples (100 replications of the experiment)

correct mean 95% conf bias

#univ 1280
#iter 7.9

Gi 1800.0 1728.7 31.5 - 4.0
G2 1571.4 1681.7 29.2 7.0
theta 13513.7 13554.7 12.2 0.3

obj 24642.3 24673.8 0.4 0.1

est. conf (%) left 0.4
est. conf (%) right 0.7
coverage 0.95
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Table 4: Model PGP2, 50 samples (100 replications of the experiment)

correct mean 95% conf bias

#univ 648
#iter 9.1

obj 392.2 392.5 0.76 0.1

est. conf (%) left 0.62
est. conf (%) right 0.9
coverage 0.98
comp. time (min) 0.28

Problem Size
Master: rows 3

columns 7
nonzeros 16

Sub: rows 8
columns 16
nonzeros 52
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Table 5: Model CEP1, 200 samples (100 replications of the experiment)

correct mean 95% cod bias

#univ 1000
#iter 6.4

obj 57790.7 58832.7 4.63 1.8

est. cord (%) left 4.65
est. cod (%) right 4.62
coverage 0.95
comp. time (min) 0.28

Problem Size:
Marks: rows 12

columns 10
nonzeros 36

Sub: rows 9
columns 16
nonzeros 53
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Table 6: Large test problems: computational results

WRPM1 WRPM2 F12

# iter stoch. (exp. val.) 139 (82) 131 (83) 4 (2)
sample size 100 100 200
exp. val. solution obj 286323.2 140041.0 1.0766
exp. val. solution, exp. cost 295473.7 147227.3 1.172
stochastic solution 289644.2 143109.2 1.169
est. conf. left % 0.0913 0.0962 0.454

corP" 6 ht % 0.063 0.1212 0.371
ool'ton time (min) 75 187 2

Problem Size
Master rows 44 86 48

columns 76 151 33
nonzeros 153 334 130

Sub rows 302 302 61
columns 289 289 45
nonzeros 866 866 194

# univ. scenarios 5038848 10077696 2.5 . 1012
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